8-3 分数のたし算、ひき算(問題集)

1.次の計算をしなさい。

(1)\(\displaystyle \frac{2}{3}+\frac{1}{6}\)

(2)\(\displaystyle \frac{3}{5}+\frac{3}{10}\)

(3)\(\displaystyle \frac{1}{4}+\frac{2}{5}\)

(4)\(\displaystyle \frac{1}{12}+\frac{11}{30}\)

(5)\(\displaystyle \frac{5}{6}+\frac{1}{4}\)

(6)\(\displaystyle \frac{1}{2}+\frac{6}{7}\)

(7)\(\displaystyle \frac{9}{10}+2\frac{7}{12}\)

(8)\(\displaystyle 2\frac{1}{4}+1\frac{2}{5}\)

(9)\(\displaystyle \frac{4}{5}+6\frac{7}{10}\)

(10)\(\displaystyle 1\frac{3}{4}+3\frac{5}{12}\)

(11)\(\displaystyle 2\frac{8}{15}+1\frac{3}{10}\)

(12)\(\displaystyle 2\frac{5}{18}+1\frac{2}{9}\)

(13)\(\displaystyle \frac{1}{3}-\frac{1}{6}\)

(14)\(\displaystyle \frac{2}{3}-\frac{1}{12}\)

(15)\(\displaystyle \frac{5}{6}-\frac{2}{3}\)

(16)\(\displaystyle \frac{3}{4}-\frac{3}{5}\)

(17)\(\displaystyle \frac{7}{8}-\frac{5}{6}\)

(18)\(\displaystyle \frac{11}{12}-\frac{7}{15}\)

(19)\(\displaystyle \frac{13}{15}-\frac{7}{10}\)

(20)\(\displaystyle 1\frac{5}{6}-\frac{4}{15}\)

(21)\(\displaystyle 1\frac{1}{3}-\frac{1}{2}\)

(22)\(\displaystyle 4\frac{2}{3}-2\frac{4}{5}\)

(23)\(\displaystyle 3\frac{1}{3}-1\frac{2}{5}\)

(24)\(\displaystyle 2\frac{5}{24}-1\frac{1}{8}\)

(25)\(\displaystyle \frac{7}{6}+\frac{8}{21}\)

(26)\(\displaystyle \frac{3}{4}+\frac{2}{9}\)

(27)\(\displaystyle \frac{7}{16}+\frac{5}{24}\)

(28)\(\displaystyle \frac{3}{4}+\frac{5}{16}\)

(29)\(\displaystyle \frac{3}{8}+\frac{5}{6}\)

(30)\(\displaystyle \frac{2}{9}+\frac{1}{6}\)

(31)\(\displaystyle \frac{3}{4}+\frac{1}{6}\)

(32)\(\displaystyle \frac{3}{14}+\frac{5}{21}\)

(33)\(\displaystyle \frac{5}{12}+\frac{5}{18}\)

(34)\(\displaystyle \frac{7}{16}+\frac{5}{24}\)

(35)\(\displaystyle \frac{1}{6}+\frac{1}{2}\)

(36)\(\displaystyle \frac{3}{4}+\frac{1}{8}\)

(37)\(\displaystyle \frac{1}{6}+\frac{9}{10}\)

(38)\(\displaystyle \frac{9}{14}+\frac{4}{21}\)

(39)\(\displaystyle \frac{4}{3}+\frac{2}{5}\)

(40)\(\displaystyle \frac{3}{5}+\frac{1}{3}\)

(41)\(\displaystyle \frac{2}{3}-\frac{3}{8}\)

(42)\(\displaystyle \frac{5}{6}-\frac{3}{4}\)

(43)\(\displaystyle \frac{5}{9}-\frac{1}{6}\)

(44)\(\displaystyle \frac{5}{8}-\frac{1}{6}\)

(45)\(\displaystyle \frac{7}{10}-\frac{7}{15}\)

(46)\(\displaystyle \frac{17}{18}-\frac{19}{24}\)

(47)\(\displaystyle \frac{13}{16}-\frac{7}{12}\)

(48)\(\displaystyle \frac{11}{14}-\frac{8}{35}\)

(49)\(\displaystyle \frac{5}{6}-\frac{7}{9}\)

(50)\(\displaystyle \frac{6}{7}-\frac{1}{2}\)

(51)\(\displaystyle \frac{2}{3}-\frac{4}{15}\)

(52)\(\displaystyle \frac{7}{6}-\frac{5}{12}\)

(53)\(\displaystyle \frac{1}{2}-\frac{2}{7}\)

(54)\(\displaystyle \frac{5}{6}-\frac{4}{27}\)

(55)\(\displaystyle \frac{5}{12}-\frac{4}{15}\)

(56)\(\displaystyle 3-\frac{3}{8}\)

(57)\(\displaystyle \frac{7}{36}+\frac{5}{9}\)

(58)\(\displaystyle \frac{9}{14}+\frac{1}{2}\)

(59)\(\displaystyle \frac{5}{6}+\frac{3}{10}\)

(60)\(\displaystyle \frac{7}{15}+\frac{5}{6}\)

(61)\(\displaystyle \frac{7}{10}+\frac{2}{15}\)

(62)\(\displaystyle 1\frac{13}{30}+\frac{3}{20}\)

(63)\(\displaystyle \frac{7}{18}+2\frac{13}{30}\)

(64)\(\displaystyle 1\frac{11}{20}+3\frac{5}{12}\)

(65)\(\displaystyle 2\frac{5}{12}+4\frac{11}{15}\)

(66)\(\displaystyle 2\frac{5}{8}+3\frac{7}{12}\)

(67)\(\displaystyle 1\frac{3}{10}+3\frac{1}{5}\)

(68)\(\displaystyle 1\frac{2}{5}+2\frac{3}{4}\)

(69)\(\displaystyle 3\frac{5}{6}+\frac{3}{10}\)

(70)\(\displaystyle 2\frac{11}{18}+3\frac{5}{9}\)

(71)\(\displaystyle \frac{9}{10}-\frac{2}{5}\)

(72)\(\displaystyle \frac{5}{6}-\frac{8}{15}\)

(73)\(\displaystyle \frac{3}{4}-\frac{7}{20}\)

(74)\(\displaystyle \frac{13}{18}-\frac{5}{9}\)

(75)\(\displaystyle \frac{11}{12}-\frac{4}{15}\)

(76)\(\displaystyle \frac{11}{14}-\frac{13}{21}\)

(77)\(\displaystyle 1\frac{1}{2}-\frac{7}{10}\)

(78)\(\displaystyle 1\frac{1}{12}-\frac{9}{20}\)

(79)\(\displaystyle 2\frac{5}{12}-1\frac{4}{15}\)

(80)\(\displaystyle 4\frac{3}{10}-2\frac{1}{6}\)

(81)\(\displaystyle 3\frac{3}{10}-1\frac{4}{5}\)

(82)\(\displaystyle 4-3\frac{5}{8}\)

(83)\(\displaystyle 5-1\frac{5}{6}\)

(84)\(\displaystyle 4\frac{1}{6}-2\frac{4}{5}\)

(85)\(\displaystyle \frac{1}{3}+\frac{1}{6}+\frac{5}{12}\)

(86)\(\displaystyle \frac{1}{4}+\frac{2}{5}+\frac{3}{10}\)

(87)\(\displaystyle \frac{7}{15}+\frac{1}{3}-\frac{3}{5}\)

(88)\(\displaystyle \frac{9}{8}-\frac{1}{6}+\frac{5}{12}\)

(89)\(\displaystyle 3-1\frac{4}{5}-\frac{7}{10}\)

(90)\(\displaystyle \frac{5}{6}-\left(\frac{1}{2}+\frac{2}{9}\right)\)

(91)\(\displaystyle 1\frac{2}{3}-\left(1\frac{1}{4}-\frac{5}{6}\right)\)

2.次の問いに答えなさい。

(1)\(\displaystyle \frac{2}{3}\)mの縄と\(\displaystyle \frac{5}{6}\)mの縄がある。合わせて何mか求めなさい。

(2)りんごと容器の重さが\(\displaystyle \frac{5}{8}\)kg、りんごの重さが\(\displaystyle \frac{2}{9}\)kgだった。容器の重さは何kgか求めなさい。

(3)家から公園まで\(\displaystyle \frac{4}{5}\)km、公園から学校まで\(\displaystyle \frac{2}{3}\)kmだった。家から公園を通って学校まではは何kmか求めなさい。

メニュー
1章 整数と小数 2章 体積 3章 比例 4章 小数のかけ算 5章 小数のわり算 6章 合同な図形と角 7章 整数の性質 8章 分数 9章 平均 10章 単位量あたりの大きさ 11章 三角形や四角形の面積 12章 割合とグラフ 13章 正多角形と円 14章 角柱と円柱
1章 整数と小数 2章 体積 3章 比例 4章 小数のかけ算 5章 小数のわり算 6章 合同な図形と角 7章 整数の性質 8章 分数 9章 平均 10章 単位量あたりの大きさ 11章 三角形や四角形の面積 12章 割合とグラフ 13章 正多角形と円 14章 角柱と円柱
当サイトに一言
このサイトは個人で作成しており、閲覧者からのコメントを元にサイトの改善、精度を上げていきたいと考えています。
質問・問題のミス・改善要望、問い合わせがあればご連絡ください。

名前[必須]

メールアドレス[必須](メールアドレスが公開されることはありません。)

コメント