【中学3年数学】7-2 平面図形への利用|要点まとめ

このページでは、中学3年数学「三平方の定理の平面図形への利用」について要点をまとめています。特別な直角三角形の性質や、対角線・高さ・弦・接線・2点間の距離を三平方の定理を使って求める方法を整理しました。定期テストや入試対策の基礎固めに役立ちます。

特別な直角三角形の性質

【特別な三角形の比】
(1)\(3\)つの角が\(45°,45°,90°\)の直角二等辺三角形の\(3\)辺の長さの比は\(1:1:\sqrt{2}\)となる。 特別な直角三角形(1) 45° 45° 1 1 2 (2)\(3\)つの角が\(30°,60°,90°\)の直角三角形の\(3\)辺の長さの比は\(1:2:\sqrt{3}\)となる。 特別な直角三角形(2) 30° 60° 1 2 3

【例題】\(x,y\)の値を求めなさい。

(1)
特別な直角三角形の問題図(1) 60° 6 x y
(2)
特別な直角三角形の問題図(2) 45° 4 x

三平方の定理を使った対角線の長さの求め方

【例題】それぞれの四角形の対角線の長さを求めなさい。

(1)\(1\)辺\(8\)cmの正方形
対角線の長さの問題図(1) 8cm x
(2)縦\(3\)cm,横\(4\)cmの長方形
対角線の長さの問題図(2) 3cm 4cm x

三平方の定理を使った三角形の高さの求め方

【三角形の高さ】
二等辺三角形の頂点から底辺に垂線をひくと、合同な直角三角形が\(2\)つできるので垂線と底辺の交点が底辺の中点になる。 三角形の高さ

【例題】それぞれの三角形で頂点から底辺におろした垂線の長さを求めなさい。

(1)\(1\)辺\(8\)cmの正三角形
三角形の高さの問題図(1) 8cm x
(2)\(3\)辺が\(10\)cm,\(10\)cm,\(12\)cmの二等辺三角形
三角形の高さの問題図(2) 10cm 12cm x

三平方の定理を使った弦の長さの求め方

【弦の長さ】
円の中心から弦に垂線をひくと、弦の垂直二等分線になる。 弦の長さ O

【例題】次の問いに答えなさい。

(1)半径\(10\)cmの円で中心Oから弦までの距離が\(6\)cmのとき、弦の長さを求めなさい。
弦の長さの問題図(1) O 10 6 x
(2)半径\(7\)cmの円で弦の長さが\(10\)cmのとき、中心Oから弦までの距離を求めなさい。
弦の長さの問題図(2) O 7 10 x

三平方の定理を使った接線の長さの求め方

円Oの円外の点から引いた接線と、円の半径は垂直になる。 接線の長さ O

【例題】次の問いに答えなさい。

(1)半径\(4\)cmの円Oと、中心からの距離が\(12\)cmのとき、接線の長さを求めなさい。
接線の長さの問題図(1) O 4 12 x
(2)円Oの中心からの距離が\(37\)cmに点があり、点からひいた接線の長さが\(35\)cmのとき、円の半径を求めなさい。
接線の長さの問題図(2) O 35 37 x

座標平面での2点間の距離の公式

【2点間の距離】
座標平面上の2点間の距離は以下のように求めることができる。
(2点間の距離)\(^2\)=(\(x\)座標の差)\(^2\)+(\(y\)座標の差)\(^2\)

【例題】次の\(2\)点間の距離を求めなさい。

(1)\((1,7),(3,4)\)
(2)\((-1,2),(5,10)\)
次の学習に進もう!
中学3年数学の単元
    1-1 式の展開
    1-2 因数分解
    1-3 式の活用
    2-1 平方根
    2-2 平方根の計算
    3-1 2次方程式の解き方
    3-2 2次方程式の利用
    4-1 2乗に比例する関数
    5-1 相似な図形
    5-2 平行線と線分の比
    5-3 相似と面積比・体積比
    6-1 円と角
    6-2 円と直線
    7-1 三平方の定理
    7-2 平面図形への利用
    7-3 空間図形への利用
    8-1 標本調査
## ご意見・ご要望はこちら
サイト改善のため、誤字訂正やご意見をお気軽にお寄せください。

名前[必須]

メールアドレス[必須](メールアドレスが公開されることはありません。)

コメント