複素数の極形式
【例題】次の複素数を極形式で表しなさい。ただし、偏角\(\theta\)は\(0\leqq\theta<2\pi\)とする。
(1)\(1+\sqrt{3}i\)
絶対値は\(|1+\sqrt{3}i|=\sqrt{1^2+(\sqrt{3})^2}=2\)
偏角は\(\displaystyle \cos\theta=\frac{1}{2},\sin\theta=\frac{\sqrt{3}}{2}\)より、\(\displaystyle \theta=\frac{\pi}{3}\)
よって、
\(\displaystyle 1+\sqrt{3}i=2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)\)
(2)\(-2-2i\)
絶対値は\(|-2-2i|=\sqrt{(-2)^2+(-2)^2}=2\sqrt{2}\)
偏角は\(\displaystyle \cos\theta=-\frac{1}{\sqrt{2}},\sin\theta=-\frac{1}{\sqrt{2}}\)より、\(\displaystyle \theta=\frac{5}{4}\pi\)
よって、
\(\displaystyle -2-2i=2\sqrt{2}\left(\cos\frac{5}{4}\pi+i\sin\frac{5}{4}\pi\right)\)
(3)\(-1\)
絶対値は\(|-1|=\sqrt{(-1)^2+0^2}=1\)
偏角は\(\cos\theta=-1,\sin\theta=0\)より、\(\theta=\pi\)
よって、
\(-1=\cos\pi+i\sin\pi\)
(4)\(3i\)
絶対値は\(|3i|=\sqrt{0^2+3^2}=3\)
偏角は\(\cos\theta=0,\sin\theta=1\)より、\(\displaystyle \theta=\frac{\pi}{2}\)
よって、
\(\displaystyle 3i=3\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\)
積と商の極形式
【積の極形式】
\(z_1z_2=r_1r_2\{\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)\}\)
\(|z_1z_2|=|z_1||z_2|,\arg(z_1z_2)=\theta_1+\theta_2\)
【商の極形式】
\(\displaystyle \frac{z_1}{z_2}=\frac{r_1}{r_2}\{\cos(\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\}\)
\(\displaystyle \left|\frac{z_1}{z_2}\right|=\frac{|z_1|}{|z_2|},\arg\frac{z_1}{z_2}=\theta_1-\theta_2\)
【例題】\(\alpha=\sqrt{3}-i,\beta=-2+2i\)のとき、次の極形式を答えなさい。ただし、偏角\(\theta\)は\(0\leqq\theta<2\pi\)とする。
(1)\(\alpha\beta\)
\(\displaystyle \alpha=\sqrt{3}-i=2\left(\cos\frac{11}{6}\pi+i\sin\frac{11}{6}\pi\right)\)
\(\displaystyle \beta=-2+2i=2\sqrt{2}\left(\cos\frac{3}{4}\pi+i\sin\frac{3}{4}\pi\right)\)
\(\displaystyle \alpha\beta=2\left(\cos\frac{11}{6}\pi+i\sin\frac{11}{6}\pi\right)・2\sqrt{2}\left(\cos\frac{3}{4}\pi+i\sin\frac{3}{4}\pi\right)\)
\(\displaystyle =4\sqrt{2}\left\{\cos\left(\frac{11}{6}\pi+\frac{3}{4}\pi\right)+i\sin\left(\frac{11}{6}\pi+\frac{3}{4}\pi\right)\right\}\)
\(\displaystyle =4\sqrt{2}\left(\cos\frac{31}{12}\pi+i\sin\frac{31}{12}\pi\right)\)
\(\displaystyle =4\sqrt{2}\left(\cos\frac{7}{12}\pi+i\sin\frac{7}{12}\pi\right)\)
(2)\(\displaystyle \frac{\alpha}{\beta}\)
\(\displaystyle \frac{\alpha}{\beta}=\frac{2\left(\cos\frac{11}{6}\pi+i\sin\frac{11}{6}\pi\right)}{2\sqrt{2}\left(\cos\frac{3}{4}\pi+i\sin\frac{3}{4}\pi\right)}\)
\(\displaystyle =\frac{1}{\sqrt{2}}\left\{\cos\left(\frac{11}{6}\pi-\frac{3}{4}\pi\right)+i\sin\left(\frac{11}{6}\pi-\frac{3}{4}\pi\right)\right\}\)
\(\displaystyle =\frac{\sqrt{2}}{2}\left(\cos\frac{13}{12}\pi+i\sin\frac{13}{12}\pi\right)\)