無限等比数列
【例題】次の極限を求めなさい。
(1)\(\displaystyle \lim_{n\to\infty}\left(\frac{\sqrt{3}}{2}\right)^n\)
\(=0\)
(2)\(\displaystyle \lim_{n\to\infty}\left(\frac{\sqrt{5}}{2}\right)^n\)
\(=\infty\)
(3)\(\displaystyle \lim_{n\to\infty}\frac{2^{n+1}}{2^n+1}\)
\(\displaystyle =\lim_{n\to\infty}\frac{2}{1+(\frac{1}{2})^n}\)
\(=2\)
(4)\(\displaystyle \lim_{n\to\infty}\frac{5^n}{3^n+4^n}\)
\(\displaystyle =\lim_{n\to\infty}\frac{(\frac{5}{4})^n}{(\frac{3}{4})^n+1}\)
\(=\infty\)
【例題】数列\(\displaystyle \left\{\frac{2r^n}{1+r^{n+1}}\right\}\)の極限を次の場合について求めなさい。
(1)\(r>1\)
\(\displaystyle \lim_{n\to\infty}\frac{2r^n}{1+r^{n+1}}\)
\(\displaystyle =\lim_{n\to\infty}\frac{2}{(\frac{1}{r})^n+r}\)
\(\displaystyle =\frac{2}{r}\)
(2)\(r=1\)
\(\displaystyle \lim_{n\to\infty}\frac{2r^n}{1+r^{n+1}}\)
\(\displaystyle =\frac{2}{1+1}\)
\(\displaystyle =1\)
(3)\(|r|<1\)
\(\displaystyle \lim_{n\to\infty}\frac{2r^n}{1+r^{n+1}}\)
\(\displaystyle =\frac{0}{1+0}\)
\(\displaystyle =0\)
(4)\(r<-1\)
\(\displaystyle \lim_{n\to\infty}\frac{2r^n}{1+r^{n+1}}\)
\(\displaystyle =\lim_{n\to\infty}\frac{2}{(\frac{1}{r})^n+r}\)
\(\displaystyle =\frac{2}{r}\)