2-2-1 関数の極限(要点)

関数の極限

【関数の極限】

関数\(f(x)\)において、\(x\)が\(a\)以外の値をとりながら\(a\)に限りなく近づくことを、\(x\to a\)のとき関数\(f(x)\)は\(\alpha\)に収束するといい、\(\alpha\)を関数\(f(x)\)の極限値という。
\(\displaystyle \lim_{x\to a}f(x)=\alpha\)
または
\(x\to a\)のとき\(f(x)\to\alpha\)
で表す。

\(x\to a\)のとき\(f(x)\)が限りなく大きくなる場合、正の無限大に発散するという。
\(\displaystyle \lim_{x\to a}f(x)=\infty\)
または
\(x\to a\)のとき\(f(x)\to\infty\)
で表す。

\(x\to a\)のとき\(f(x)\)が限りなく小さくなる場合、負の無限大に発散するという。
\(\displaystyle \lim_{x\to a}f(x)=-\infty\)
または
\(x\to a\)のとき\(f(x)\to-\infty\)
で表す。

極限値の性質

【関数の極限値の性質】

\(\displaystyle \lim_{x\to a}f(x)=\alpha,\lim_{x\to a}g(x)=\beta\)のとき、
(1)\(\displaystyle \lim_{x\to a}kf(x)=k\alpha\)
ただし、\(k\)は定数
(2)\(\displaystyle \lim_{x\to a}\{f(x)+g(x)\}=\alpha+\beta\)
(3)\(\displaystyle \lim_{x\to a}\{f(x)-g(x)\}=\alpha-\beta\)
(4)\(\displaystyle \lim_{x\to a}f(x)g(x)=\alpha\beta\)
(5)\(\displaystyle \lim_{x\to a}\frac{f(x)}{g(x)}=\frac{\alpha}{\beta}\)
ただし、\(\beta\neq0\)

【関数の大小関係】

\(\displaystyle \lim_{x\to a}f(x)=\alpha,\lim_{x\to a}g(x)=\beta\)のとき、
\(a\)の近くで\(f(x)\leqq g(x)\)ならば\(\alpha\leqq\beta\)

【はさみうちの定理】

\(\displaystyle \lim_{x\to a}f(x)=\alpha,\lim_{x\to a}g(x)=\beta\)のとき、
\(a\)の近くで\(f(x)\leqq h(x)\leqq g(x)\)かつ\(\alpha=\beta\)ならば\(\displaystyle \lim_{x\to a}h(x)=\alpha\)


【例題】次の極限値を求めなさい。

(1)\(\displaystyle \lim_{x\to -2}(x^2-3)\)

(2)\(\displaystyle \lim_{x\to 1}\frac{x^3-1}{x^2-1}\)

(3)\(\displaystyle \lim_{x\to 0}\frac{\sqrt{x+9}-3}{x}\)

(4)\(\displaystyle \lim_{x\to-\infty}(x^3+3x^2)\)

(5)\(\displaystyle \lim_{x\to\infty}\frac{x^2+4x}{x^2-2}\)

(6)\(\displaystyle \lim_{x\to\infty}(\sqrt{x^2-3}-x)\)

(7)\(\displaystyle \lim_{x\to-\infty}(\sqrt{x^2+x}+x)\)

関数の片側極限

【片側極限】

\(x\)が\(a\)より大きい値をとりながら限りなく\(a\)に近づくことを\(x\to a+0\)と表す。このときの関数\(f(x)\)の極限を右側極限といい、\(\displaystyle \lim_{x\to a+0}f(x)\)と表す。
\(x\)が\(a\)より小さい値をとりながら限りなく\(a\)に近づくことを\(x\to a-0\)と表す。このときの関数\(f(x)\)の極限を左側極限といい、\(\displaystyle \lim_{x\to a-0}f(x)\)と表す。
右側極限と左側極限が存在して一致するとき、極限が存在する。


【例題】次の極限値を求めなさい。

(1)\(\displaystyle \lim_{x\to+0}\frac{1}{x}\)

(2)\(\displaystyle \lim_{x\to1-0}\frac{x^2-1}{|x-1|}\)

(3)\(\displaystyle \lim_{x\to2}\frac{|x^2-4|}{x-2}\)

(4)\(\displaystyle \lim_{x\to-1}\frac{1}{(x+1)^2}\)

1章 関数

1-1 関数

2章 極限

2-1 数列の極限

2-2 関数の極限

3章 微分法

3-1 導関数

4章 微分法の応用

4-1 導関数の応用

5章 積分法

5-1 不定積分

5-2 定積分

6章 積分法の応用

6-1 積分法の応用

1章 関数

1-1 関数

2章 極限

2-1 数列の極限

2-2 関数の極限

3章 微分法

3-1 導関数

4章 微分法の応用

4-1 導関数の応用

5章 積分法

5-1 不定積分

5-2 定積分

6章 積分法の応用

6-1 積分法の応用

当サイトに一言
このサイトは個人で作成しており、閲覧者からのコメントを元にサイトの改善、精度を上げていきたいと考えています。
質問・問題のミス・改善要望、問い合わせがあればご連絡ください。

名前[必須]

メールアドレス[必須](メールアドレスが公開されることはありません。)

コメント