1-1-1 数列の極限の定義(要点)

イプシロン・デルタ論法

【\(\varepsilon-\delta\)論法】

\(a,b\in\mathbb{R}\)とする。任意の\(\varepsilon>0\)に対して
\(|a-b|<\varepsilon\)
が成り立つならば、\(a=b\)である。

【数列の極限】

(1)数列\(\{a_n\}^\infty_{n=1}\)と実数\(\alpha\)が「任意の\(\varepsilon>0\)に対して、ある自然数\(N(\varepsilon)\)が存在して、\(n\geqq N(\varepsilon)\)を満たす任意の自然数\(n\)について\(|a_n-\alpha|<\varepsilon\)を満たす」とき、数列\(\{a_n\}^\infty_{n=1}\)の極限値は\(\alpha\)であるといい、
\(\displaystyle \lim_{n\to\infty}a_n=\alpha\)または\(a_n\rightarrow\alpha(n\rightarrow\infty)\)
で表す。このとき、数列\(\{a_n\}^\infty_{n=1}\)は\(\alpha\)に収束する。

(2)数列\(\{a_n\}^\infty_{n=1}\)がどのような実数\(\alpha\)にも収束しないとき発散する。さらに「任意の\(K>0\)に対して、ある自然数\(N(K)\)が存在して、\(n\geqq N(K)\)を満たす任意の自然数\(n\)について\(a_n>K\)を満たす」とき、数列\(\{a_n\}^\infty_{n=1}\)は\(\infty\)に発散するといい、
\(\displaystyle \lim_{n\to\infty}a_n=\infty\)
で表す。また「任意の\(K<0\)に対して、ある自然数\(N(K)\)が存在して、\(n\geqq N(K)\)を満たす任意の自然数\(n\)について\(a_n< K\)を満たす」とき、数列\(\{a_n\}^\infty_{n=1}\)は\(-\infty\)に発散するといい、
\(\displaystyle \lim_{n\to\infty}a_n=-\infty\)
で表す。

【極限の一意性】

数列\(\{a_n\}^\infty_{n=1}\)が収束するならば、極限値は一意的である。


【例題】次の数列の極限を求めなさい。

(1)\(\displaystyle \lim_{n\to\infty}\frac{1}{n}\)

(2)\(\displaystyle \lim_{n\to\infty}\frac{1}{n^2}\)

(3)\(\displaystyle \lim_{n\to\infty}\frac{3n+5}{n+1}\)

1章 数列の極限

1-1 数列の極限

1章 数列の極限

1-1 数列の極限

## ご意見・ご要望はこちら
サイト改善のため、誤字訂正やご意見をお気軽にお寄せください。

名前[必須]

メールアドレス[必須](メールアドレスが公開されることはありません。)

コメント